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Why we simplify models
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Why we validate models
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The need for quantification
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● 100 - 3000 models
● Median duration of a single model 

validation is >4 weeks**
● Tiering (quant. & qual.)

○ materiality
○ risk exposure
○ regulatory impact

● Qualitative assessments are fairly 
stable over time

● Quantitative assessments can change 
quickly and allow for accurate risk 
management procedures

●

The number of models in financial institutions 
increases with 10 – 20 % yearly*

*  See http://www.mckinsey.com/business-functions/risk/our-insights/the-evolution-of-model-risk-management
**  See  https://www2.deloitte.com/content/dam/Deloitte/dk/Documents/financial-services/deloitte-nl-global-model-practice-survey.pdf

http://www.mckinsey.com/business-functions/risk/our-insights/the-evolution-of-model-risk-management
https://www2.deloitte.com/content/dam/Deloitte/dk/Documents/financial-services/deloitte-nl-global-model-practice-survey.pdf


Structure of a model validation

The highlights:

● Model dependencies

● Data
Quality, representativeness, preprocessing, controls

● Framework and assumptions

● Model design and performance testing
Model selection, backtesting, benchmarking, sensitivity 
testing, model uncertainty

● Model monitoring

● Limitations
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Where can ML help?
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Data
● Detecting quality issues
● Verifying representativeness
● Determining unstable model behavior

Model design and performance testing
● benchmarking
● sensitivity analysis
● scenario generation
● model uncertainty

Model monitoring
● comparison with benchmarks and/or surrogates
● automated detection of issues
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Different types of uncertainty

Definition*

● X is the quantity of interest we want to model
● xi are states that are possible outcomes of X
● P is the model
● P is the set of available models

Risk: We know the probability of each outcome xi

Uncertainty: We do not know the probability of each outcome xi

● Model risk: Probability measure on P
● Model uncertainty: We do now know the probabilities on P

More precisely: Model ambiguity means several specifications for probabilities on P**

* See Knight, F. (1921) Risk, uncertainty and profit, Boston: Houghton Mifflin.
** See Epstein, L.G. (1999) A definition of uncertainty aversion, Review of Economic Studies, 65, 579–608.
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Two paradigms: Model averaging vs worst-case*

Bayesian model averaging

● Prior on model parameters p(θi|Pi)
● Prior weights on models p(Pi)

Posterior probability on model Pi

With the likelihood of the observed data under Pi being

Computing model-dependent quantities via

Example: option pricing**
Problem: How to choose the prior distributions over models?

* See Cont R. (2006) Model uncertainty and its impact on the pricing of derivative instruments. Mathematical Finance, Wiley
** See Bannör K. and Scherer M (2014) Model Risk and Uncertainty, Springer International Publishing
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Two paradigms: Model averaging vs worst-case*

Worst case

An agent facing uncertainty maximizes his expected utility defined as the worst-case over 
all available models

Example: Ellsberg paradox (ambiguity aversion)

● Urn A: 50/50
● Urn B: assume subjective probability of distribution 

is 40/60

The agent will go for A

* See Gilboa & Schmeidler (1989) Maxmin expected utility with non-unique prior, Journal of mathematical economics



Two paradigms: Model averaging vs worst-case*
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Both methods have some key challenges in common

● How do we choose the candidate models?
● How to sample relevant parameters?

Machine learning can complement expert opinion to automatically generate candidate 
models and sample model parameters.

Similar to scenario generation in specification based testing of software.



Neural networks

NN Topology Neuron
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NN in action
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Autoencoder

● Minimize reconstruction 
error |x - x`|

● Linear autoencoder = PCA*

● Fast

● Non-linear activation

Used for dimensional reduction 
and outlier detection

* See e.g. https://www.cs.toronto.edu/~urtasun/courses/CSC411/14_pca.pdf

https://www.cs.toronto.edu/~urtasun/courses/CSC411/14_pca.pdf
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Anomaly detection with autoencoder

1. Train an autoencoder on the data and compute the 
Mahalanobis distance histogram

2. Fit a heavy-tailed distribution to the histogram to 
determine a cut-off parameter. Samples with 
Mahalanobis distance above this value are considered 
anomalies

3. The resulting vol surfaces are indeed outliers as can be 
seen via the z-scores of their parameters
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Anomaly detection with unlabelled data

15

The bottleneck of the autoencoder can be used to reduce the dimensionality of the 
problem (to e.g. plot the dataset in 2D). The red dots are the detected outliers.
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Generative adversarial networks*

● Contains a generator and a discriminator
● Generative model can serve as a source for test data

* See Goodfellow I. et al, Generative adversarial networks, 
https://arxiv.org/abs/1406.2661

https://arxiv.org/abs/1406.2661
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Sampling parameters

Using autoencoder to partition data

PD model (logistic regression) calibrated on Lending Club Loan Data* 
900k rows, 75 columns, discrete and continuous

Random train / test split: AUC = .896

Training: 99% inner points AUC 
on test set = .873

Training: 99.9% inner points AUC 
on test set = .845

*  See https://www.kaggle.com/wendykan/lending-club-loan-data

https://www.kaggle.com/wendykan/lending-club-loan-data
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Sampling parameters – ctu’ed

Use GAN’s to generate realistic datasets

● As an alternative to e.g. bootstrapping
● To deal with sparse data

Example: Model performance analysis

1. Generate labeled datasets (1000)
2. Calibrate model on training set
3. Measure out of sample performance

AUC -2 log (L)

Bootstrap .87 - .92 .143 - .176

GAN .84 - .93 .120 - .179
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Sampling models

Hyperparameter “de-tuning”

ML in general and (deep) neural network algorithms have many degrees of freedom

● Number of layers, number of nodes and connections
● Activation functions
● Learning rates
● Etc.

Grid Random

* See https://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf
** See https://github.com/EpistasisLab/tpot

SMAC* Genetic 
programming**

https://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf
https://github.com/EpistasisLab/tpot


Documenting neural networks

“NN are black-box or at least hard to understand”

Similar problem in quantum field theory 
was solved by developing a beautiful 
graphical language

Feynman diagrams
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Documenting neural networks ctu’ed

Krizhevsky-style Tensorboard - style
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Model uncertainty in deep learning*

● Why does my model work?

E.g. dropouts: avoids over-fitting and 
improves performance, but why?

● What does my model know?
I.e. understanding the degree of 
certainty in the model

E.g. train model to recognize dog 
breeds and present a cat
E.g.2 train model on Dutch mortgages
and present a Belgian client

training testing
* See http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf

http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf


Why does dropout work?

● Place prior distribution on the weights p(w)
● Given dataset (x: input, y: label), the posterior is p(w|x,y)
● Define simple distribtion qM(w)
● Approximate posterior by qM via minimization of the KL divergence

This is approximate variational inference

One can prove that
Now take qM(w) = M * diag Bernouilli

Sampling from qM(w) is randomly putting columns in M to zero = randomly setting nodes to 
zero = dropout

Hence, dropout is approximately integrating over model parameters

loss L2 regularization
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What does my model know?

With a Bayesian NN we can compute the uncertainty on the output by looking at the 
second moment
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Recap
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● We have introduced classical concepts of model uncertainty and model risk

● We discussed a Bayesian approach (risk; model averaging) and maxmin approaches 
(uncertainty; robust expected utility)

● We can use ML to generate candidate models and sample candidate model 
parameters automatically

● We can use Bayesian neural networks to integrate over model parameters (dropouts) 
and measure uncertainty



Thank you!
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